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The ionized gas flow in the boundary layer on bodies of revolution with porous 
contour is studied in this paper. The gas electroconductivity is assumed to be a 
function of the longitudinal co-ordinate, x. The problem is solved using Saljni-
kov's version of the general similarity method. This paper is an extension of 
Saljnikov’s generalized solutions and their application to a particular case of 
magnetohydrodynamic flow. Generalized boundary layer equations have been 
numerically solved in a four-parametric localized approximation and character-
istics of some physical quantities in the boundary layer has been studied.  
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Introduction 

This paper is a continuation of investigations of the planar flow in the dissociated 
and ionized gas boundary layer. The ionized gas flows in the conditions of equilibrium ioniza-
tion. The contour of the body within the fluid is porous. 

The general similarity method was first introduced by Loitsianskii [1, 2] and later 
improved by Saljnikov [3], and Saljnikov and Dallmann [4]. Both versions are based on mo-
mentum equations and corresponding sets of similarity parameters. Loitsianskii's method was 
applied to problems of the dissociated gas flow in the boundary layer [5, 6]. Saljnikov's ver-
sion was used for the temperature boundary layer [7, 8], the MHD boundary layer theory 
[9-11], and for solution of the dissociated and ionized gas flow in the boundary layer [12-16]. 
In this paper, Saljnikov's version of the general similarity method has been applied.  

Mathematical model 

At supersonic speeds of aircrafts through the Earth's atmosphere, the temperature in 
the viscous boundary layer increases significantly. Gas dissociation and then ionization occur 
and the air becomes a multicomponent mixture of atoms, electrons and positively charged 
ions of oxygen, nitrogen, etc. [17-19]. When the temperature in the air flow is high enough, 
the thermo-chemical equilibrium is established. The electroconductivity, σ, is an important 
property of the ionized gas and it is a function of the temperature i. e. enthalpy [20].  
–––––––––––––– 
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When the ionized gas flows in the magnetic field of the intensity Bm = Bm(x), an 
electric current is formed. Lorentz force and Joule's heat are the consequence of mutual ef-
fects of the magnetic field, fluid velocity and electric current density [20]. The electroconduc-
tivity is also assumed to be a function of the longitudinal co-ordinate x, thus the electrocon-
ductivity variation law can be written: 

( )xσ σ=  (1) 

Hence, in the case of the ionized gas flow in the magnetic field under conditions of 
equilibrium ionization, the equations of steady laminar boundary layer on bodies of revolution 
with porous wall [12, 20, 21] take the form: 
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as the dynamic equation, and: 
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as the energy equation. 
The boundary conditions are: 
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Lorentz force and Joule's heat are determined 
respectively for the terms )( e

2
m uuB −σ  and 

)( e
22
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[20]. The following symbols are 

used: x, y – the longitudinal and transversal co-or-
dinates, u (x, y) – the longitudinal velocity projec-
tion in the boundary layer, v (x, y) – the transversal 
velocity projection, r – the density, h – the enthal-
py, m – the dynamic viscosity, r (x) – the radius of 
the body of revolution in the meridian plane (fig. 
1), and Pr = mcp/λ. Here, λ denotes the thermal 
electroconductivity coefficient and cp 

the specific
heat of the ionized gas at constant pressure. The 

subscript е stands for physical quantities at the outer edge of the boundary layer 
(y → ∞) and the subscript w denotes the values on the wall of the body of revolution (y = 0). 
The velocity vw (x) at which the gas flows perpendicularly through the porous wall of the body 
of revolution can be positive (at injection) or negative (at suction). 

The continuity eq. (2) can be written in a more convenient form: 

Figure 1. Ionized gas flow adjacent to the 
body of revolution 
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where L is the constant length whose value can be equal to one [6]. 

Transformation of the equations 

In order to apply the general similarity method, analogous to already solved prob-
lems of axisymmetrical compressible fluid flow in the boundary layer [6, 22], new variables 
are introduced: 
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Here, r0, m0 and rw (x), mw (x) denote the known values of the density and the dy-
namic viscosity of the gas at some point of the boundary layer (subscript 0) and on the wall of 
the body of revolution (subscript w). 

The stream function ψ (s, z) is introduced using the relations: 
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that follow from the continuity eq. (6).  
Since the boundary condition for the velocity at the inner edge of the boundary layer 

(5) does not equal zero, v = vw (x) ≠ 0, as with incompressible fluid [2], the stream function  
ψ (s, z) is divided into two parts:  

 w( , ) ( ) ( , ), ( , 0) 0s z s s z sψ ψ ψ ψ= + =  (9) 

Here, ψw (s) = ψ (s, 0) stands for the stream function of the flow adjacent to the wall 
(z = 0) for the body of revolution. 

Further on, following variables are introduced: 
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(10) 

where n0 is the kinematic viscosity at a concrete point. 



Savić, S. R., et al.: Analysis of the Axisymmetrical Ionized Gas Boundary… 
532 THERMAL SCIENCE, Year 2016, Vol. 20, No. 2, pp. 529-540 

The following symbols are used: h (s, z) – the newly introduced transversal variable, 
Φ (s, h) – the non-dimensional stream function, h – the non-dimensional enthalpy, h1 – the 
stagnation enthalpy in the outer flow, and a, b – arbitrary constants. In this paper the subscript 
1 is used for h1 as usually used in the literature [5, 6, 12] that deals with the dissociated and 
ionized gas boundary layer flow.  

Using (7)-(10), the eqs. (3) and (4) and boundary conditions (5) are transformed into 
the following system with the corresponding boundary conditions: 
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where prim (′) stands for a derivative per the variable s. 
The usual quantities in the boundary layer theory [5, 12] are introduced to the sys-

tem (11): the conditional displacement thickness ∆*(s), the conditional momentum loss thick-
ness ∆**(s), the conditional thickness )(1 s∗∆ , the non-dimensional friction function z (s), and 
the characteristic boundary layer function Fmp. They are defined:  

e e
1

e e e e0 0 0
( ) d , ( ) 1 d , ( ) 1 du u u us z s z s z

u u u u
ρρ

∆ ∆ ∆
ρρ

∞ ∞ ∞
∗ ∗∗ ∗     

= − = − = −     
     
∫ ∫ ∫

2 2
e1

1 2
00

0

, , ( ) ,

z

u
uH H s B Zz

η

∆∆ Φ ∆z
ν∆ ∆ η

∆

∗∗ ∗∗
∗∗

∗∗ ∗∗
=∗∗

=

 ∂   ∂ = = = = =  ∂   ∂  

(12)

mp
mp 1, 2[ (2 ) ] 2 2

e

FdZ F H f gH
ds u

ζ
∗∗

= = − + − − Λ

While derivating the momentum equation, the expressions for ∆*(s), ∆**(s), and 
)(1 s∗∆ were obtained. The first two of these expressions have the same form as the corre-
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sponding expressions defining the displacement thickness and momentum loss thickness of 
the incompressible fluid. Since these expressions have the same form, these values are re-
ferred to as conditional thicknesses both in this paper and in the literature [5, 12]. 

In eq. (11), the form parameter, f(s), the magnetic parameter, g(s), the porosity pa-
rameter, Λ(s), and the local compressibility parameter, κ(s), [5] are all basic parameters that 
depend on the conditions at the outer or inner edge of the boundary layer [22]. They are de-
fined:  
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where Vw(s) denotes the conditional transversal velocity at the inner edge of the boundary 
layer. The local compressibility parameter is determined: 
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The non-dimensional function Q = rm /(rwmw) and the density ratio re /r that appear 
in the system (11) depend on the thermo-dynamical properties of the ionized gas. Analytical 
expressions of these functions are needed for numerical solution of the system (11).  

Note that both equations of the system (11) contain e e/u u′  in their terms. Conse-
quently, the solution of the system will depend on a particular form of the law of the given ve-
locity ue (s) at the outer edge of the boundary layer. As a result, the obtained system is not 
generalized in terms of Loitsianskii [2]. The analysis has shown that it is not possible to de-
rive generalized boundary layer equations for the studied problem using the functions Φ (s, h) 
and ),( ηsη .  

Generalized boundary layer equations 

In order to bring the governing equation system into a generalized form, a new 
stream function, Φ, and a non-dimensional enthalpy, h , are introduced:  
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In eq. (15), (fk) denotes a set of form parameters of Loitsianskii's type [2], (gk) stands 
for a set of magnetic parameters, and (Λk) denotes a set of porosity parameters of the porous 
wall [21]. These are new independent variables (instead of the variable s) and they are de-
fined:  
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Each set of parameters (16) satisfies a corresponding recurrent simple differential 
equation:  
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The first parameters in the introduced sets (k = 1) represent the already defined form 
parameter ∗∗′== Zuff e1 , magnetic parameter ∗∗== ZSgg1 , and porosity parameter 
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w 0 w 0[ /( ) ] /V Z Vν ∆ ν∗∗ ∗∗− = −  (13). 

Applying similarity transformations (15), a generalized boundary layer equation sys-
tem of ionized gas flow on bodies of revolution with porous wall has been obtained: 
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Here, distribution of the velocity ue (s) at the outer edge of the boundary layer does 
not figure explicitly, so the system is generalized. In the case of a non-porous wall of the body 
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within the fluid (vw = 0), all the porosity parameters equal zero and eq. (18) comes down to 
the system for the flow adjacent to a non-porous wall of the body of revolution [23]. Note that 
for j = 0, the system (18) is absolutely identical to the corresponding system for the case of 
planar ionized gas flow [24].  

Since a numerical solution is practically impossible, the obtained equation system is 
solved in an n-parametric localized approximation (solution for a relatively small number of 
parameters). In the four parametric ,0,0( 10 ≠=≠= fffκ  ,01 ≠= gg  ;01 ≠= ΛΛ  

0=== kkk gf Λ  for )2≥k  three times localized approximation ( / 0,κ∂ ∂ =  
1 1/ 0, / 0)g∂ ∂ = ∂ ∂Λ =  the obtained equation system (18) is significantly simplified. Thus it 

comes down to the equation system: 
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in which the subscript 1 is left out in the first parameters and where the characteristic function 
Fmp is determined by the relation eq. (12).  

The system eq. (19) presents the general mathematical model of the ionized gas flow 
in the boundary layer adjacent to the porous wall on bodies of revolution. Due to the per-
formed localization, the parameters κ = f0, g, and Λ become simple parameters. Hence, the 
system (19) is solved for in advance given values of these parameters.  

Numerical solution 

In eq. (19), analogous to the dissociated air [5], approximate dependences are adopt-
ed for the function Q and the density ratio re /r:  
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Correct laws on distributions of these quantities can be obtained only by detailed 
analysis and using thermodynamic tables for ionized air, but this is not a priority of our study. 
Since, Prandtl number slightly depends on the temperature [5], the equations of the system 
(19) are solved for the constant value Pr = 0.712. For constants a and b, the usual values are 
adopted [4]: a = 0.4408 and b = 5.7140.  
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The system of differential partial equations of the third order (19) is numerically 
solved after the order of the dynamic equation has been decreased by the change: 

 e
( , , , , )u f g

u
Φ ϕ η κ
η

∂
= = Λ
∂

 (21) 

The system is solved by finite differences method using a tridiagonal matrix algo-
rithm. Values of the functions ϕ, Φ, and h  are calculated at discrete points for each calculat-
ing layer of the calculating integration grid. The number of discrete points is M = N = 401. 
The system (19) is numerically solved using a program written in FORTRAN.  

The equations are solved by iterative procedure. The usual values for the characteris-
tic functions B, Q, and Fmp at a zero iteration are: ,469.00

1 =+KB  0
1, 1 1,KQ + =  and 

.4411.00
1,mp =+KF  The step for the variables is 0.05η∆ =  and 0.001.f∆ =   

Results 

The system (19) is numerically solved for each cross-section of the boundary layer, 
starting from the cross-section f1 = 0.00. Solutions are obtained in tabular form.  

 
Figure 2. Distribution of the non-dimensional 
velocity 

 
Figure 4. Distribution of non-dimensional  
enthalpy for different values of the  
compressibility parameter 

 
Figure 3. Distribution of the non-dimensional 
enthalpy 

 
Figure 5. Distribution of the non-dimensional 
friction function for different values of the  
porosity parameter 
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Only some of the obtained results are given here in the form of diagrams. Figure 2 
shows the diagram of the non-dimensional velocity e/ /u u Φ η= ∂ ∂  for three cross-sections of 
the boundary layer (f = -0.14; 0.05; 0.14) when κ = f0 = 0.50. 

The diagram in fig. 3 presents distribution of the non-dimensional enthalpy h  for 
three cross-sections of the boundary layer. Figure 4 gives distribution of the non-dimensional 
enthalpy h  at a cross-section of the boundary layer (f = f1 = 0.10) for four different values of 
the compressibility parameter (κ = f0 = 0.20; 0.50; 0.70; 0.90). Figure 5 shows a diagram of 
the non-dimensional friction function z(f) in the boundary layer for three different values of 
the porosity parameter Λ. Distribution of the non-dimensional friction function for different 
values of the magnetic parameter is given in fig. 6. Figure 7 shows distribution of the charac-
teristic function Fmp for different values of the parameter Λ. 

 
Figure 6. Distribution of the non-dimensional 
friction function for different values of the 
magnetic parameter 

 
Figure 7. Distribution of the characteristic 
boundary layer function  

Conclusions 

This investigation has shown that Saljnikov's version of the general similarity meth-
od can be successfully used for solution of the studied problem of the axisymmetrical ionized 
gas flow in the boundary layer. Important quality results here obtained illustrate distributions 
of both physical and characteristic quantities at different cross-sections of the boundary layer. 

Based on the diagrams here presented and others not shown, a general conclusion 
can be drawn that the distributions of the physical and characteristic quantities have the same 
behavior as with other problems of dissociated or ionized gas flow in the boundary layer. 

The following conclusions can also be made. 
• The non-dimensional flow velocity u/ue (fig. 2) at certain cross-sections of the boundary 

layer on bodies of revolution converges very fast towards one, which is also characteristic 
for similar flow problems [25]. 

• The non-dimensional enthalpy h  converges relatively fast towards the value at the outer 
edge of the boundary layer. 

• Figure 4 shows that the compressibility parameter 0f=κ  has a significant influence on 
the distribution of the non-dimensional enthalpy, h , in the boundary layer. As with other 
problems of the dissociated and ionized gas flow, this parameter changes the general be-
havior of the distribution of the enthalpy .h  
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• The porosity parameter, Λ, has a significant influence on the non-dimensional friction
function z (fig. 5). Consequently, it has a significant influence on the boundary layer sep-
aration point.

• The magnetic parameter, g, has a significant influence on z (fig. 6). By variation of the
input parameters, assuming that the electroconductivity is the function of the longitudinal
co-ordinate x, it has been concluded that the magnetic field will not postpone the separa-
tion of the boundary layer, as in [26-29].

• Behavior of the characteristic boundary layer function Fmp (fig. 7) is as expected and as
usual [28].

In order to obtain more accurate results, the system (18) should be solved in a four-
parametric approximation but without localization per the compressibility parameter, but this 
is fraught with difficulties, mainly of numerical nature. 
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Nomenclature 
B − boundary layer characteristic, [−] 
Bm − induction of outer magnetic field  

[= Bm(x)], [Vsm–2] 
a, b − constants, [−] 
cp  − specific heat of ionized gas at constant 

pressure, [Jkg–1K–1] 
Fmp − characteristic boundary layer function, [−] 
f1  − first form parameter (= f ), [−] 
fk − set of form parameters, [−] 
g1  − first magnetic parameter (= g), [−] 
gk − set of magnetic parameters, [−]  
H, H1 − boundary layer characteristic, [−] 
h − enthalpy, [Jkg–1] 
h  − non-dimensional enthalpy, [−] 
he − enthalpy at the outer edge of the boundary 

layer, [Jkg–1] 
hw − enthalpy at the wall of the body within the 

fluid, [Jkg–1] 
h1 − total enthalpy in the outer flow, [Jkg–1] 
j, k − numbers, [−] 
L − constant length, [m] 
M − discrete point, [−] 
Pr − Prandtl number (= mcp/λ), [−] 
Q − non-dimensional function, [−] 
r − radius of the body of revolution in the 

meridian plane, [m] 
s − new longitudinal variable, [m] 
u − longitudinal projection of velocity in the 

boundary layer, [ms–1] 
ue − velocity at the boundary layer outer edge, 

[ms–1] 
Vw − conditional transversal velocity, [ms–1] 
v − transversal projection of velocity in the 

boundary layer, [ms–1] 

vw − velocity of injection (or suction) of the 
fluid, [ms–1]  

x, y − longitudinal and transversal co-ordinate, [m] 
Z** − function, [s] 
z − new transversal variable, [m] 

Greek symbols 

∆* − conditional displacement thickness, [m] 
∆**  − conditional momentum loss thickness, [m] 
∆1

** − conditional thickness, [m]  
z − non-dimensional friction function, [−] 
h − non-dimensional transversal co-ordinate, [−] 
κ − local compressibility parameter (= f0), [−] 
Λ1 − first porosity parameter (= Λ), [−]  
Λk − set of porosity parameters, [−]  
λ  − thermal conductivity coefficient, [Wm–1K–1] 
m − dynamic viscosity, [Pa⋅s] 
m0 − known values of dynamic viscosity of the 

ionized gas, [Pa⋅s] 
mw − given distributions of dynamic viscosity at 

the wall of the body within the fluid, [Pa⋅s] 
n0 − kinematic viscosity at a concrete point of 

the boundary layer, [m2s–1] 
r − density of ionized gas, [kgm–3] 
re − ionized gas density at the outer edge of the 

boundary layer, [kgm–3] 
r0 − known values of density of the ionized gas, 

[kgm–3] 
rw − given distributions of density at the wall of 

the body within the fluid, [kgm–3] 
σ − electroconductivity, [Nm3V–2s–1] 
Φ − non-dimensional stream function, [−] 
ψ − stream function, [m2s–1] 
ψ  − new stream function, [m2s–1]
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